skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Iter, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A pulsar’s pulse profile gets broadened at low frequencies due to dispersion along the line of sight or due to multipath propagation. The dynamic nature of the interstellar medium makes both of these effects time-dependent and introduces slowly varying time delays in the measured times-of-arrival similar to those introduced by passing gravitational waves. In this article, we present an improved method to correct for such delays by obtaining unbiased dispersion measure (DM) measurements by using low-frequency estimates of the scattering parameters. We evaluate this method by comparing the obtained DM estimates with those, where scatter-broadening is ignored using simulated data. A bias is seen in the estimated DMs for simulated data with pulse-broadening with a larger variability for a data set with a variable frequency scaling index, $$\alpha$$, as compared to that assuming a Kolmogorov turbulence. Application of the proposed method removes this bias robustly for data with band averaged signal-to-noise ratio larger than 100. We report the measurements of the scatter-broadening time and $$\alpha$$ from analysis of PSR J1643$$-$$1224, observed with upgraded Giant Metrewave Radio Telescope as part of the Indian Pulsar Timing Array experiment. These scattering parameters were found to vary with epoch and $$\alpha$$ was different from that expected for Kolmogorov turbulence. Finally, we present the DM time-series after application of this technique to PSR J1643$$-$$1224. 
    more » « less
  2. Fugitive methane (CH4) and carbon dioxide (CO2) emissions at municipal solid waste (MSW) landfills constitute one of the major anthropogenic sources of greenhouse gas (GHG) emissions to the atmosphere. In recent years, biocovers involving the addition of organic-rich amendments to landfill cover soils is proposed to promote microbial oxidation of CH4 to CO2. However, most of the organic amendments used have limitations. Biochar, a solid byproduct obtained from gasification of biomass under anoxic or low oxygen conditions, has characteristics that are favorable for enhanced microbial oxidation in landfill covers. Recent investigations have shown the significant potential of biochar-amended cover soils in mitigating the CH4 emissions from MSW landfills. Although the CH4 emissions are mitigated, there is still considerable amount of CO2 that is emitted to the atmosphere as a result of microbial oxidation of CH4 in landfill covers as well as the CO2 derived from MSW decomposition. Basic oxygen furnace (BOF) slag is a product of steel making has great potential for CO2 sequestration due to its strong alkaline buffering and high carbonation capacity. In an ongoing project, funded by the U.S. National Science Foundation, the potential use of BOF slag in landfill covers along with biochar-amended soils to mitigate both CH4 and CO2 emissions is being investigated. This paper presents the initial results from this study and it includes detailed physical and chemical and leachability characteristics of BOF slag, and a series of batch tests conducted on BOF slag to determine its CH4 and CO2 uptake capacity. The effect of moisture content on the carbonation capacity of BOF slag was also evaluated by conducting batch tests at different moisture contents. In addition, small column experiments were conducted to evaluate the gas migration, transport parameters and the CO2 sequestration potential of BOF slag under simulated landfill gas conditions. The result from the batch and column tests show a significant uptake of CO2 by BOF slag for the tested conditions and demonstrates excellent potential for its use in a landfill cover system. 
    more » « less
  3. Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA. 
    more » « less
  4. Abstract We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 1051–1057erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB. 
    more » « less
  5. null (Ed.)